## **FEATURES**

- ► Efficiency up to 83%
- ► High Power Density
- ► 4:1 Input Range
- ► I / O Isolation 1500VDC
- ► Remote on/off Control
- ► SMT Technology
- ► Short Circuit Protection
- ► EMI Complies With EN55022 Class A
- ► MTBF > 1,000,000 Hours
- ▶ 3 Years Product Warranty







# PRODUCT OVERVIEW

Minmax's MSKW3000-Series are in "gull-wing" SMT package. The series consists of 14 models with input voltage ranges of 9-36VDC and 18-75VDC which provide precisely regulated output voltages of 3.3V, 5V, 12V, 15V, ±5V, ±12V and ±15VDC.

The -40°C to +85°C operating temperature range makes it ideal for data communication equipments, mobile battery driven equipments, distributed power systems, telecommunication equipments, mixed analog/digital subsystems, process/machine control equipments, computer peripheral systems and industrial robot systems.

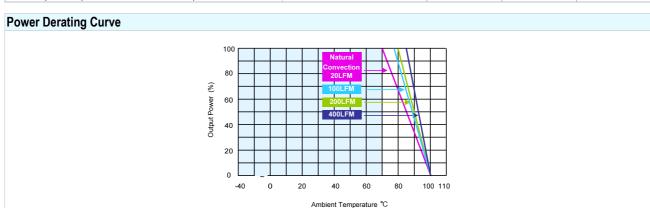
The modules have a maximum power rating of 5W and a typical full-load efficiency of 83%, continuous short circuit, Remote on/off EN55022 Class A conducted noise compliance minimize design-in time, cost and eliminate the need for external filtering.

| Model Select    | tion Guide       |         |                |       |               |          |                     |                 |                   |
|-----------------|------------------|---------|----------------|-------|---------------|----------|---------------------|-----------------|-------------------|
| Model<br>Number | Input<br>Voltage | Voltage | Output Current |       | Input Current |          | Reflected<br>Ripple | Max. capacitive | Efficiency (typ.) |
|                 | (Range)          |         | Max.           | Min.  | @Max. Load    | @No Load | Current             |                 | @Max. Load        |
|                 | VDC              | VDC     | mA             | mA    | mA(typ.)      | mA(typ.) | mA(typ.)            | μF              | %                 |
| MSKW3021        |                  | 3.3     | 1200           | 120   | 217           | 20       | 15                  | 2000            | 76                |
| MSKW3022        |                  | 5       | 1000           | 100   | 260           |          |                     | 2000            | 80                |
| MSKW3023        |                  | 12      | 417            | 41.7  | 251           |          |                     | 470             | 83                |
| MSKW3024        | 24<br>(9 ~ 36)   | 15      | 333            | 33.3  | 251           |          |                     | 330             | 83                |
| MSKW3025        | (9 ~ 36)         | ±5      | ±500           | ±50   | 260           |          |                     | 680#            | 80                |
| MSKW3026        |                  | ±12     | ±208           | ±20.8 | 251           |          |                     | 330#            | 83                |
| MSKW3027        |                  | ±15     | ±167           | ±16.7 | 252           |          |                     | 220#            | 83                |
| MSKW3031        |                  | 3.3     | 1200           | 120   | 109           |          |                     | 2000            | 76                |
| MSKW3032        |                  | 5       | 1000           | 100   | 130           |          |                     | 2000            | 80                |
| MSKW3033        |                  | 12      | 417            | 41.7  | 126           |          |                     | 470             | 83                |
| MSKW3034        | 48<br>(19 75)    | 15      | 333            | 33.3  | 125           | 10       | 10                  | 330             | 83                |
| MSKW3035        | (18 ~ 75)        | ±5      | ±500           | ±50   | 130           |          |                     | 680#            | 80                |
| MSKW3036        |                  | ±12     | ±208           | ±20.8 | 125           |          |                     | 330#            | 83                |
| MSKW3037        |                  | ±15     | ±167           | ±16.7 | 126           |          |                     | 220#            | 83                |

# For each output



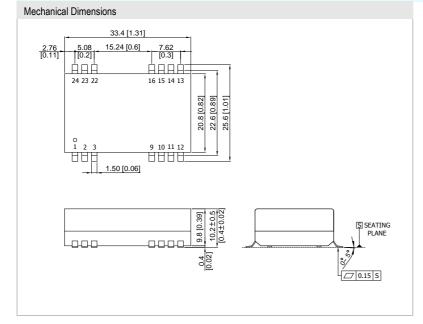
| Input Specifications              |                  |            |                                                          |      |      |
|-----------------------------------|------------------|------------|----------------------------------------------------------|------|------|
| Parameter                         | Model            | Min.       | Тур.                                                     | Max. | Unit |
| Innut Come Valtage (4 and man)    | 24V Input Models | -0.7       |                                                          | 50   |      |
| Input Surge Voltage (1 sec. max.) | 48V Input Models | -0.7       |                                                          | 100  |      |
| Chart Us Therebold Valters        | 24V Input Models | 7          | 8                                                        | 9    | VDC  |
| Start-Up Threshold Voltage        | 48V Input Models | 14         | 16                                                       | 18   |      |
| Lladar Valtaga Chutdaum           | 24V Input Models | 6          | 7                                                        | 8    |      |
| Under Voltage Shutdown            | 48V Input Models | 13         | 15                                                       | 17   |      |
| Reverse Polarity Input Current    | All Models       |            |                                                          | 1    | Α    |
| Short Circuit Input Power         |                  |            | 1000                                                     | 3000 | mW   |
| Internal Power Dissipation        |                  |            |                                                          | 2500 | mW   |
| Conducted EMI                     |                  | Compliance | Compliance to EN 55022, class A and FCC part 15, class A |      |      |

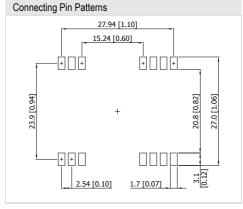

| Output Specifications           |                             |            |       |       |                   |
|---------------------------------|-----------------------------|------------|-------|-------|-------------------|
| Parameter                       | Conditions                  | Min.       | Тур.  | Max.  | Unit              |
| Output Voltage Setting Accuracy |                             |            |       | ±2.0  | %Vom.             |
| Output Voltage Balance          | Dual Output, Balanced Loads |            | ±0.5  | ±3.0  | %                 |
| Line Regulation                 | Vin=Min. to Max.            |            | ±0.2  | ±1.0  | %                 |
| Load Regulation                 | lo=10% to 100%              |            | ±0.3  | ±1.0  | %                 |
| Ripple & Noise                  | 0-20 MHz Bandwidth          |            |       | 85    | mV <sub>P-P</sub> |
| Transient Recovery Time         | 25% Load Ston Change        |            | 250   | 500   | μsec              |
| Transient Response Deviation    | 25% Load Step Change        |            | ±2    | ±6    | %                 |
| Temperature Coefficient         |                             |            | ±0.01 | ±0.02 | %/°C              |
| Over Load Protection            | Foldback                    | 115        |       |       | %                 |
| Short Circuit Protection        |                             | Continuous |       |       |                   |

| General Specifications           |                                   |           |      |      |       |
|----------------------------------|-----------------------------------|-----------|------|------|-------|
| Parameter                        | Conditions                        | Min.      | Тур. | Max. | Unit  |
| I/O Isolation Voltage (rated)    | 60 Seconds                        | 1500      |      |      | VDC   |
| I/O Isolation Resistance         | 500 VDC                           | 1000      |      |      | МΩ    |
| I/O Isolation Capacitance        | 100KHz, 1V                        |           | 650  | 750  | pF    |
| Switching Frequency              |                                   |           | 340  |      | KHz   |
| MTBF (calculated)                | MIL-HDBK-217F@25°C, Ground Benign | 1,000,000 |      |      | Hours |
| Moisture Sensitivity Level (MSL) | IPC/JEDEC J-STD-020D.1            | Level 2   |      |      |       |

| Remote On/Off Control       |                      |                        |      |      |      |
|-----------------------------|----------------------|------------------------|------|------|------|
| Parameter                   | Conditions           | Min.                   | Тур. | Max. | Unit |
| Converter On                | 2.5                  | V ~ 5.5V or Open Circ  | uit  |      |      |
| Converter Off               |                      | -0.7V ~ 0.8V           |      |      |      |
| Control Input Current (on)  | Vctrl = Min. to Max. |                        |      | -600 | μΑ   |
| Control Input Current (off) | Vctrl = Min. to Max. |                        |      | -700 | μΑ   |
| Control Common              | Ref                  | erenced to Negative Ir | put  |      |      |
| Standby Input Current       |                      |                        |      | 10   | mA   |




| Environmental Specifications                                   |                    |                     |      |          |
|----------------------------------------------------------------|--------------------|---------------------|------|----------|
| Parameter                                                      | Conditions         | Min.                | Max. | Unit     |
| Operating Ambient Temperature Range (See Power Derating Curve) | Natural Convection | -40                 | +85  | °C       |
| Case Temperature                                               |                    |                     | +90  | °C       |
| Storage Temperature Range                                      |                    | -50                 | +125 | °C       |
| Humidity (non condensing)                                      |                    |                     | 95   | % rel. H |
| Cooling                                                        |                    | Free-Air convection | 1    |          |
| Lead Temperature (1.5mm from case for 10Sec.)                  |                    |                     | 260  | °C       |

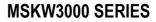



## **Notes**

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%
- 3 These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however they may not meet all specifications listed.
- 4 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 5 Other input and output voltage may be available, please contact factory.
- 6 That "natural convection" is about 20LFM but is not equal to still air (0 LFM).
- 7 Specifications are subject to change without notice.

# **Package Specifications**






- ► All dimensions in mm (inches)
- ► Tolerance: X.X±0.25 (X.XX±0.01)

  X.XX±0.13 ( X.XXX±0.005)
- ► Pins ±0.05 (±0.002)

E-mail:sales@minmax.com.tw Tel:886-6-2923150

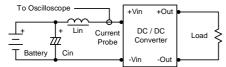
www.minmax.com.tw





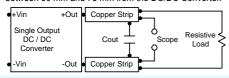
| Pin Connections |               |               |  |  |
|-----------------|---------------|---------------|--|--|
| Pin             | Single Output | Dual Output   |  |  |
| 1               | Remote On/Off | Remote On/Off |  |  |
| 2               | -Vin          | -Vin          |  |  |
| 3               | -Vin          | -Vin          |  |  |
| 9               | NC            | Common        |  |  |
| 10              | NC            | NC            |  |  |
| 11              | NC            | -Vout         |  |  |
| 12              | NC            | NC            |  |  |
| 13              | NC            | NC            |  |  |
| 14              | +Vout         | +Vout         |  |  |
| 15              | NC            | NC            |  |  |
| 16              | -Vout         | Common        |  |  |
| 22              | +Vin          | +Vin          |  |  |
| 23              | +Vin          | +Vin          |  |  |
| 24              | NC            | NC            |  |  |

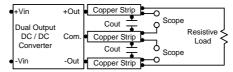
| Physical Characteristics |   |                                                               |
|--------------------------|---|---------------------------------------------------------------|
| Case Size                | : | 33.4x20.8x10.2mm (1.31x0.82x0.4 inches)                       |
| Case Material            | : | Non-Conductive Black Plastic (flammability to UL 94V-0 rated) |
| Pin Material             | : | phosphor bronze                                               |
| Weight                   | : | 14g                                                           |


NC : No Connection

## **Test Setup**

#### Input Reflected-Ripple Current Test Setup


Input reflected-ripple current is measured with a inductor Lin (4.7 $\mu$ H) and Cin (220 $\mu$ F, ESR < 1.0 $\Omega$  at 100 KHz) to simulate source impedance.


Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 KHz.



#### Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.47µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.

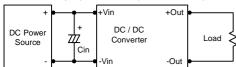




#### **Technical Notes**

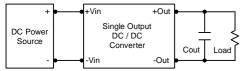
#### Remote On/Off

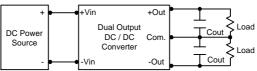
Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is -0.7V to 0.8V. A logic high is 2.5V to 5.5V.


The maximum sink current of the switch at on/off terminal during a logic low is  $300\mu$ A. The maximum sink current of the switch at on/off terminal = 2.5 to 5.5V is  $200\mu$ A or open.

#### Overcurrent Protection

To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.


#### Input Source Impedance

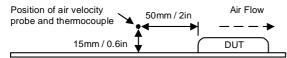

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR <  $1.0\Omega$  at 100 KHz) capacitor of a  $3.3\mu\text{F}$  for the 12V input devices and a  $2.2\mu\text{F}$  for the 24V and 48V devices.



#### Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use  $3.3\mu$ F capacitors at the output.






### Maximum Capacitive Load

The MSKW3000 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. For optimum performance we recommend 100µF maximum capacitive load for dual outputs and 680F capacitive load for single outputs. The maximum capacitance can be found in the data sheet.

# Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 90°C. The derating curves are determined from measurements obtained in a test setup.



Minmax Technology Co., Ltd.