

FEATURES

- ► DIP-24 Metal Package 31.8 x 20.3 x 10.2 mm (1.25 x 0.8 x 0.4 inches)
- ► Ultra-wide 4:1 Input Range
- ► Excellent Load and Line Regulation
- ▶ Operating Ambient Temp. Range –40°C to +85°C
- ► Short Circuit Protection
- ► I/O-isolation 1500VDC
- ▶ Input Filter meets EN55022,class A and FCC, level A
- ▶ 3 Years Product Warranty

PRODUCT OVERVIEW

The MINMAX MIW4100 series is a range of isolated DC/DC converter modules with 5-6W output power featuring fully regulated output voltages and ultra-wide 4:1 input voltage ranges. The product comes in a shielded metal DIP-24 package with standard pinout. A high efficiency allows an operating temperature range of -40°C to +85°C. The product features an input filter meeting EN 55022, class A and FCC, level A.

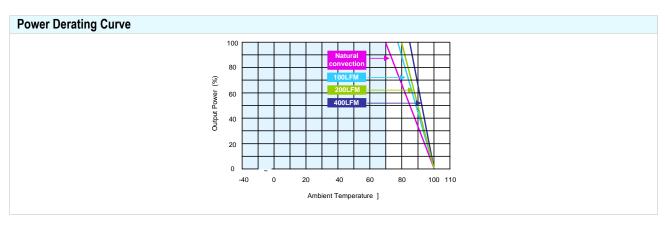
Typical applications for these converters are in battery operated equipment and instrumentation, distributed power systems, data communication and general industrial electronics.

Model	Input	Output	Ou	tput	Input Current		Reflected	Max. capacitive	Efficiency
	Voltage	Voltage	Current			Ripple	Load	(typ.)	
	(Range)		Max.	Min.	@Max. Load	@No Load	Current		@Max. Load
	VDC	VDC	mA	mA	mA(typ.)	mA(typ.)	mA(typ.)	uF	%
MIW4121		3.3	1200	120	220			470 100	75
MIW4122		5	1000	100	267				78
MIW4123	0.4	12	500	50	301				83
MIW4124	24 (9 ~ 36)	15	400	40	305	20	20		82
MIW4125	(9 - 30)	±5	±500	±50	267			100#	78
MIW4126		±12	±250	±25	301				83
MIW4127		±15	±200	±20	305				82
MIW4131		3.3	1200	120	110	10	15	15 100 100#	75
MIW4132		5	1000	100	134				78
MIW4133		12	500	50	151				83
MIW4134	48	15	400	40	152				82
MIW4135	(18 ~ 75.)	±5	±500	±50	134				78
MIW4136		±12	±250	±25	151				83
MIW4137		±15	±200	±20	152				82

For each output

Input Specifications							
Parameter	Model	Min.	Тур.	Max.	Unit		
Innut Curso Voltage (1 and may)	24V Input Models	-0.7		50			
Input Surge Voltage (1 sec. max.)	48V Input Models	-0.7		100			
Ole at the Welferen	24V Input Models	7	8	9	VDC		
Start-Up Voltage	48V Input Models	14	16	18	VDC		
Linday Valtaga Chuthia	24V Input Models			8.5			
Under Voltage Shutdown	48V Input Models			16			
Short Circuit Input Power				3000	mW		
Input Filter	All Models		Internal Pi Type				
Conducted EMI		Compliance to EN 55022, class A and FCC part 15, class A					

E-mail:sales@minmax.com.tw Tel:886-6-2923150

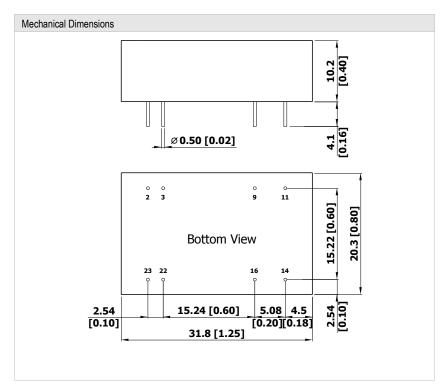


DC/DC CONVERTER 5-6W, DIP-Package

Output Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy			±1.0	±2.0	%Vnom.
Output Voltage Balance	Dual Output, Balanced Loads		±1.0	±2.0	%
Line Regulation	Vin=Min. to Max. @Full Load		±0.1	±0.5	%
Load Regulation	lo=10% to 100%		±0.5	±1.0	%
Cross Regulation (Dual)	Asymmetrical load 25% / 100% FL			±5.0	%
Ripple & Noise	0-20 MHz Bandwidth		50	80	mV _{P-P}
Transient Recovery Time	259/ Load Ston Change		300	500	uS
Transient Response Deviation	25% Load Step Change		±3		%
Temperature Coefficient			±0.01	±0.02	%/°C
Over Load Protection	Foldback	110	250	350	%
Short Circuit Protection	Continuous, Automatic Recovery				

General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
I/O Isolation Voltage	60 Seconds	1500			VDC
	1 Second	1800			VDC
I/O Isolation Resistance	500 VDC	1000			MΩ
I/O Isolation Capacitance	100KHz, 1V		1000	1200	pF
Switching Frequency			450		KHz
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	und Benign 800,000		Hours	
Safety Approvals	UL/cUL 60950-1 r	UL/cUL 60950-1 recognition(CSA certificate), IEC/EN 60950-1			

Environmental Specifications						
Parameter	Conditions	Min.	Max.	Unit		
Operating Ambient Temperature Range (See Power Derating Curve)	Natural Convection	-40	+85	°C		
Case Temperature			+100	°C		
Storage Temperature Range		-50	+125	°C		
Humidity (non condensing)			95	% rel. H		
Cooling	Natural Convection					
Lead Temperature (1.5mm from case for 10Sec.)			260	°C		



DC/DC CONVERTER 5-6W, DIP-Package

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%
- 3 These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however they may not meet all specifications listed.
- 4 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 5 Other input and output voltage may be available, please contact factory.
- 6 Specifications are subject to change without notice.

Package Specifications

Pin Connections					
Pin	Single Output	Dual Output			
2	-Vin	-Vin			
3	-Vin	-Vin			
9	No Pin	Common			
11	NC	-Vout			
14	+Vout	+Vout			
16	-Vout	Common			
22	+Vin	+Vin			
23	+Vin	+Vin			

NC: No Connection

- ► All dimensions in mm (inches)
- ► Tolerance: X.X±0.25 (X.XX±0.01)

X.XX±0.13 (X.XXX±0.005)

▶ Pin diameter Ø 0.5 ±0.05 (0.02±0.002)

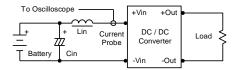
Physical Characteristics

Case Size : 31.8x20.3x10.2mm (1.25x0.80x0.40 Inches)

Case Material : Aluminum Anodizing Treatment in Black

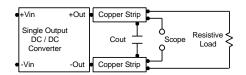
Pin Material Copper Alloy with Gold Plate Over Nickel Subplate

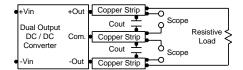
Weight : 13.9g



DC/DC CONVERTER 5-6W. DIP-Package

Test Configurations

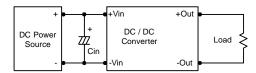

Input Reflected-Ripple Current Test Setup


Input reflected-ripple current is measured with a inductor Lin (4.7uH) and Cin (220uF, ESR < 1.0Ω at 100 KHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 KHz.

Peak-to-Peak Output Noise Measurement Test

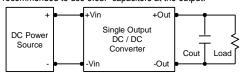
Use a Cout 0.47uF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.

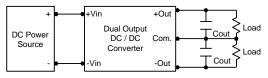
Design & Feature Considerations


Overcurrent Protection

To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

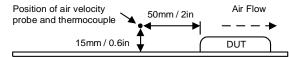
Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup.


Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 KHz) capacitor of a 4.7uF for the 24V input devices and a 2.2uF for the 48V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3uF capacitors at the output.



Maximum Capacitive Load

The MIW4100 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 100°C. The derating curves are determined from measurements obtained in a test setup.

