

MKWI80 Series EC Note

DC-DC CONVERTER 80W, Highest Power Density

Features

- ► Smallest Encapsulated 80W Converter
- ► Ultra-compact 2"×1" Package
- ► Ultra-high Power Density 93W/in³
- ► Excellent Efficiency up to 92%
- ► Ultra-wide 4:1 Input Voltage Range
- ► Fully Regulated Output Voltage
- ► I/O Isolation 1500 VDC
- ▶ Wide Operating Ambient Temp. Range
- ► No Min. Load Requirement
- ► Very Low No Load Power Consumption
- ► Under-voltage, Overload/Temperature and Short Circuit Protection
- ➤ Remote On/Off Control, Output Voltage Trim
- ➤ Shielded Metal Case with Insulated Baseplate
- ► UL/cUL/IEC/EN 62368-1 Safety Approval & CE Marking (Pending)

Applications

- ➤ Distributed power architectures
- ➤ Workstations
- ➤ Computer equipment
- ► Communications equipment

Product Overview

The MKWI80 series is a cutting-edge 80W encapsulated isolated DC-DC converter in a compact 2"x1" package. With an impressive power density of 93W/in³ and efficiency up to 92%, it is tailored for space-sensitive applications without compromising on performance. The series features an ultra-wide 4:1 input voltage range, fully regulated outputs, and 1500 VDC I/O isolation, ensuring dependable operation in diverse and challenging environments. In addition, the MKWI80 series offers a wide operating temperature range, remote On/Off control, and output voltage trim functionality. Its ultra-low no-load power consumption and comprehensive protections—including under-voltage, overload, temperature, and short circuit safeguards—ensure reliable and energy-efficient operation.

Certified to UL/cUL/IEC/EN 62368-1 standards and CE marked, the MKWI80 series meets stringent global safety requirements. Available output voltage options include 5V, 12V, 15V, 24V, 48V, 54V, ±12V, and ±15V, making it an excellent choice for industrial, telecom, and other mission-critical applications demanding compact size and exceptional power performance.

Table of contents

Model Selection GuideP2	External Output TrimmingP22
Input SpecificationsP2	Test SetupP23
Remote On/Off Control	Technical NotesP23
	Remote ON/OFF Implementation
General Specifications	Packaging InformationP24
EMC Specifications	Wave Soldering ConsiderationsP25
Environmental Specifications	Hand Welding ParameterP25
	Part Number StructureP26
Package Specifications	MTBF and ReliabilityP26
Recommended Pad Layout	•

Model Selection	Guide																
Model	Input	Output	Output	Input		Max. capacitive	Efficiency										
Number	Voltage	Voltage	Current	Cur	rent	Load	(typ.)										
	(Range)		Max.	@Max. Load	@No Load		@Max. Load										
	VDC	VDC	mA	mA(typ.)	mA(typ.)	μF	%										
MKWI80-24S05		5	16000	3663		28600	91										
MKWI80-24S12		12	6600	3587		4950	92										
MKWI80-24S15		15	5300	3601	45	3150	92										
MKWI80-24S24	24	24	3300	3587		45	45				45			45	4.5	1250	92
MKWI80-24S48	(9 ~ 36)	48	1670	3630				330	92								
MKWI80-24S54		54	1480	3620						250	92						
MKWI80-24D12		±12	±3300	3587				2500#	92								
MKWI80-24D15		±15	±2660	3614		1600#	92										
MKWI80-48S05		5	16000	1832		28600	91										
MKWI80-48S12		12	6600	1793		4950	92										
MKWI80-48S15		15	5300	1800		3150	92										
MKWI80-48S24	48	24	3300	1793	35	1250	92										
MKWI80-48S48	(18 ~ 75)	48	1670	1815		330	92										
MKWI80-48S54		54	1480	1810		250	92										
MKWI80-48D12		±12	±3300	1793		2500#	92										
MKWI80-48D15		±15	±2660	1807		1600#	92										

For each output

Input Specifications						
Parameter		Conditions / Model	Min.	Тур.	Max.	Unit
Input Surge Voltage (100ms. max)		24V Input Models	-0.7		50	
		48V Input Models	-0.7		100	
Start-Up Threshold Voltage		24V Input Models			9 ,	
		48V Input Models			18	VDC
Under Voltage Lockout		24V Input Models		7.8		
		48V Input Models		16		
Start Up Time	Power Up	Newsing Win and Constant Posinting Load		50		ms
	Remote On/Off	Nominal Vin and Constant Resistive Load		50		ms

Remote On/Off Contr	ol							
Parameter		Conditions	Min.	Тур.	Max.	Unit		
Desitive lesis (Otenderal)	Converter On	3.5√	/ ~ 12V or Open Circuit					
Positive logic (Standard)	Converter Off	0V	~ 1.2V or Short Circuit					
Nanativa Iania (Ontian)	Converter On	0V ~ 1.2V or Short Circuit						
Negative logic (Option)	Converter Off	3.5V ~ 12V or Open Circuit						
Positive logic Control Input (Current (on)	Vctrl = 5.0V		0.5		mA		
Positive logic Control Input (Current (off)	Vctrl = 0V		-0.5		mA		
Negative logic Control Input	Current (on)	Vctrl = 0V		-0.5		mA		
Negative logic Control Input Current (off)		Vctrl = 5.0V 0.5				mA		
Control Common		Referenced to Negative Input						
Standby Input Current					8	mA		

Date:2025-01-23 Rev:0 MKWI80 Series – EC Notes 2

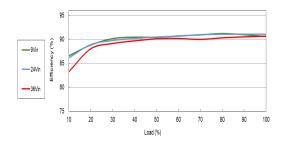
Output Specifications							
Parameter		Conditions / Model			Тур.	Max.	Unit
Output Voltage Setting Accuracy						±1.0	%Vnom.
Output Voltage Balance		ual Output, Balanced	l Loads			±2.0	%
Line Regulation	V	in=Min. to Max. @ Fu	ıll Load			±0.2	%
Load Regulation		lo=0% to 100%	,			±0.3	%
Cross Regulation (Dual)	Asy	mmetrical Load 25%	/ 100% FL			±5.0	%
Minimum Load			No minimum L	oad Requirem	ent		
		5Vo			75	100	mV _{P-P}
	0-20 MHz	12Vo,15Vo ±12Vo, ±15Vo	Measured with a 22µF MLCC		100	125	mV _{P-P}
Ripple & Noise	Bandwidth	24Vo			150	200	mV _{P-P}
		48Vo			250	300	mV _{P-P}
		54Vo			280	330	mV _{P-P}
Transient Recovery Time		25% Load Step Cha	nge ₍₂₎			500	μS
Temperature Coefficient						±0.02	%/°C
T: H. / D D (O D (0))	0/ - 5 N		Other Models			±10	%
Trim Up / Down Range (See Page 22)	% of Nomi	% of Nominal Output Voltage 54Vo Output				+5 / -15	%
Over Load Protection		Hiccup				160	%
Overshoot						5	%
Short Circuit Protection		Continu	ous, Automatic Reco	very (Hiccup M	lode 0.33Hz ty	p.)	

General Specifications							
Parameter	Conditions	Min.	Тур.	Max.	Unit		
NO looleties Velters	60 Seconds	1500			VDC		
I/O Isolation Voltage	1 Second	1800			VDC		
Isolation Voltage Input/Output to case	60 Seconds	1000			VDC		
I/O Isolation Resistance	500 VDC	1000			MΩ		
I/O Isolation Capacitance	100kHz, 1V		1500		pF		
Switching Frequency		150		500(8)	kHz		
MTBF(calculated)	MIL-HDBK-217F@25°C Full Load, Ground Benign		114,244		Hours		
Safety Approval (Pending)	UL/cUL 62368-1 recognition(UL ce	UL/cUL 62368-1 recognition(UL certificate), IEC/EN 62368-1(CB-report)					

EMC Specifications						
Parameter		Standards & Level				
EMI	Conduction	EN 55032	With external components	Class A		
EN 55032	EN 33032	with external components	Class A			
	EN 55035					
	ESD	Direct discharge	Indirect discharge HCP & VCP	Α		
	EOD	EN 61000-4-2 Air ± 8kV, Contact ± 6kV	Contact ± 6kV	Α		
EMS ₍₆₎	Radiated immunity	EN 61000-4-3	10V/m	Α		
EIVIO(6)	Fast transient	EN 61000-4-4	1 ±2kV	Α		
	Surge	EN 61000-4-5	5 ±2kV	Α		
	Conducted immunity	EN 61000-4-6 10Vrms		Α		
	PFMF	EN 61000-4-8 100A/m for Cont	inuous; 1000 A/m for 1 s	Α		

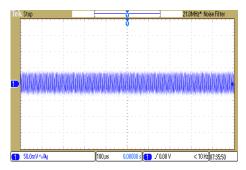
Date:2025-01-23 Rev:0 MKWI80 Series – EC Notes 3

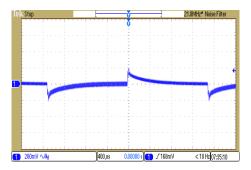
Environmental Specifications						
Doromotor	One different (Model		Ma	Max.		
Parameter	Conditions / Model	Min.	without Heatsink	with Heatsink	Unit	
	MKWI80-24S05, MKWI80-48S05		+50	+65		
	MKWI80-24S12, MKWI80-24S15, MKWI80-24S24					
Operating Ambient Temperature Range	MKWI80-24D12, MKWI80-24D15, MKWI80-48S12		00	7.5		
Nominal Vin, Load 100% Inom.	MKWI80-48S15, MKWI80-48S24, MKWI80-48D12	-40	+60	+75	°C	
(for Power Derating see relative Derating Curves)	MKWI80-48D15					
	MKWI80-24S48, MKWI80-24S54			70		
	MKWI80-48S48, MKWI80-48S54		+55	+70		
Case Temperature			+1	05	°C	
Over Temperature Protection (Case)			+1	15	°C	
Storage Temperature Range		-50	+1	25	°C	
Humidity (non condensing)			9	5	% rel. H	
RFI	Six-Sided Shield	ded, Metal	Case			
Lead Temperature (1.5mm from case for 10Sec.)			26	60	°C	

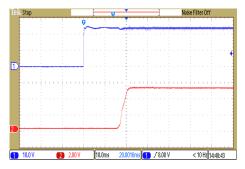

Notes

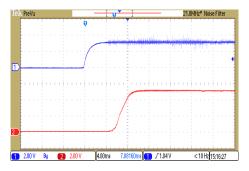
- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 It is necessary to parallel a capacitor across the input pins under hot-swap operation. Minimum Capacitance: 68µF/100V KZE.
- 6 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 7 Do not exceed maximum power specification when adjusting output voltage.
- 8 Switching frequency changes depending on input and load.
- 9 Specifications are subject to change without notice.
- The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

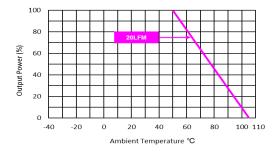

Date: 2025-01-23 Rev: 0 MKWI80 Series – EC Notes 4

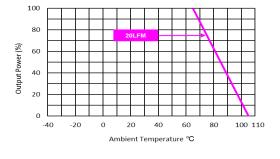

All test conditions are at 25°C The figures are identical for MKWI80-24S05


Efficiency Versus Output Current

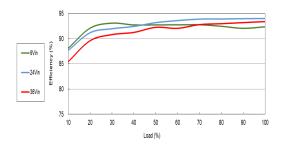

Efficiency Versus Input Voltage Full Load

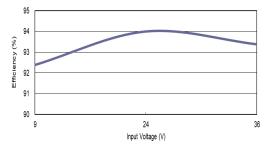

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

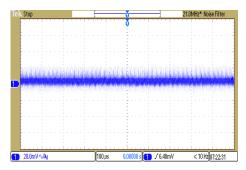

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\;nom}$

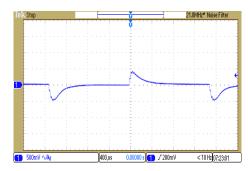

Typical Input Start-Up and Output Rise Characteristic Vin=Vin nom; Full Load

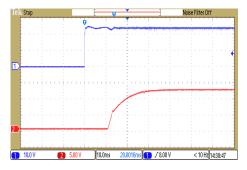
ON/OFF Voltage Start-Up and Output Rise Characteristic Vin=Vin nom; Full Load

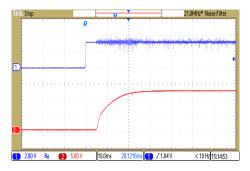

Derating Output Current Versus Ambient Temperature V_{in}=V_{in nom (without heatsink)}

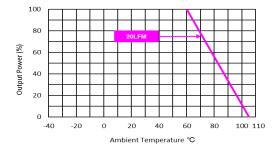

Derating Output Current Versus Ambient Temperature V_{in}=V_{in nom (with heatsink)}

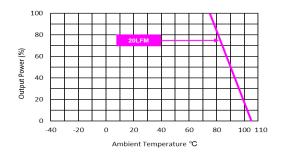

All test conditions are at 25° C The figures are identical for MKWI80-24S12


Efficiency Versus Output Current

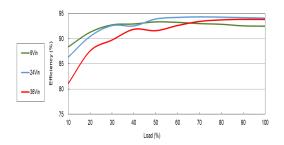

Efficiency Versus Input Voltage Full Load

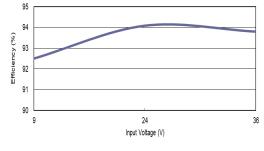

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

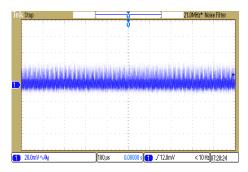

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

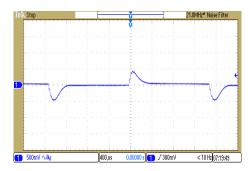

Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

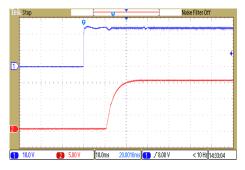
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in\,nom}$; Full Load

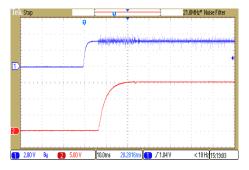

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom (without heatsink)}}$

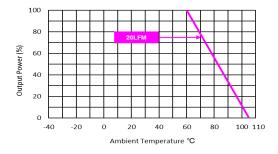

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom (with heatsink)}}$

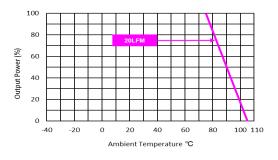

All test conditions are at 25°C $\,$ The figures are identical for MKWI80-24S15 $\,$


Efficiency Versus Output Current

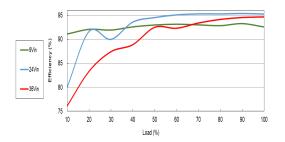

Efficiency Versus Input Voltage Full Load

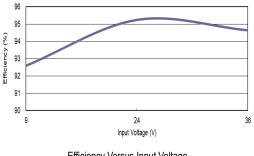

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

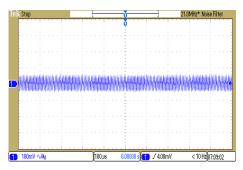

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

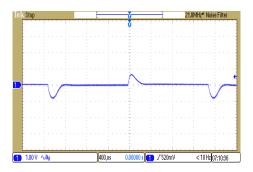

Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

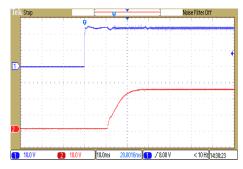
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in\,nom}$; Full Load

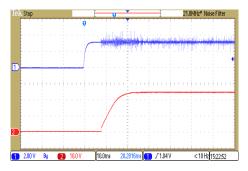

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom (without heatsink)}}$

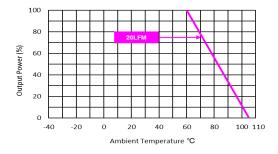

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom (with heatsink)}}$

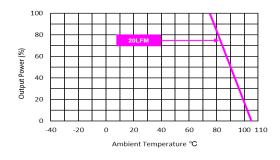

All test conditions are at 25°C The figures are identical for MKWI80-24S24


Efficiency Versus Output Current

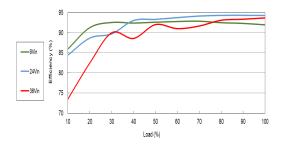

Efficiency Versus Input Voltage Full Load

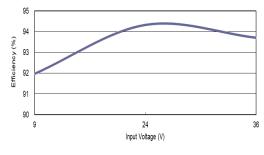

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

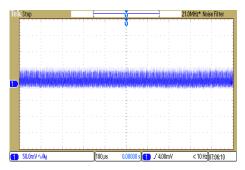

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in nom}$

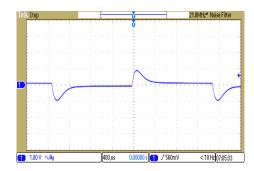

Typical Input Start-Up and Output Rise Characteristic Vin=Vin nom; Full Load

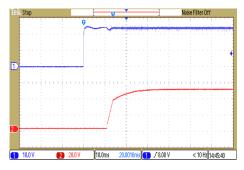
ON/OFF Voltage Start-Up and Output Rise Characteristic Vin=Vin nom; Full Load

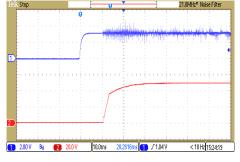

Derating Output Current Versus Ambient Temperature V_{in}=V_{in nom (without heatsink)}

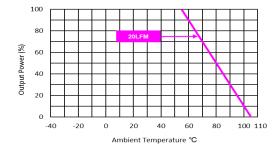

Derating Output Current Versus Ambient Temperature V_{in}=V_{in nom (with heatsink)}

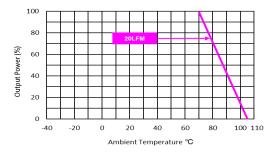

All test conditions are at 25°C The figures are identical for MKWI80-24S48


Efficiency Versus Output Current

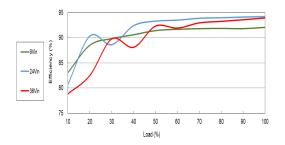

Efficiency Versus Input Voltage Full Load

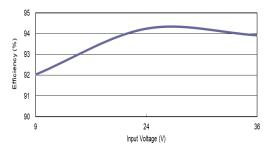

Typical Output Ripple and Noise $V_{in}\text{=}V_{in\,nom}\,;\,Full\,Load$

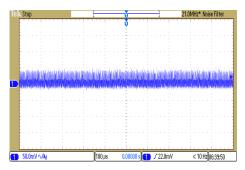

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; $V_{in}=V_{in\;nom}$

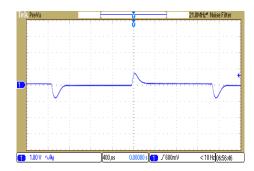

Typical Input Start-Up and Output Rise Characteristic Vin=Vin nom; Full Load

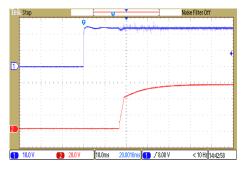
ON/OFF Voltage Start-Up and Output Rise Characteristic Vin=Vin nom; Full Load

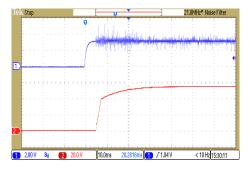

Derating Output Current Versus Ambient Temperature V_{in}=V_{in nom (without heatsink)}

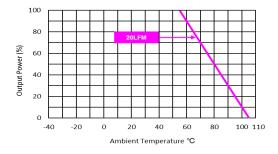

Derating Output Current Versus Ambient Temperature V_{in}=V_{in nom (with heatsink)}

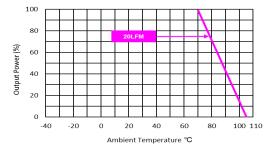

All test conditions are at 25°C The figures are identical for MKWI80-24S54


Efficiency Versus Output Current

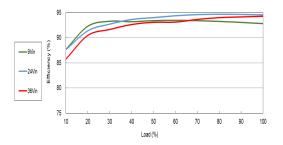

Efficiency Versus Input Voltage Full Load

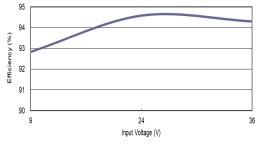

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

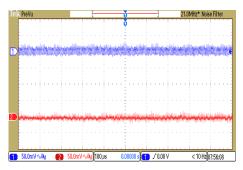

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

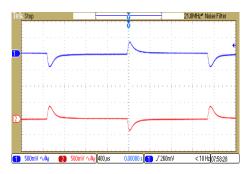

Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

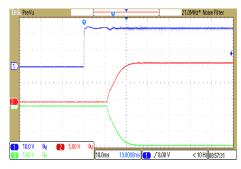
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

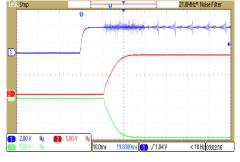

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom (without heatsink)}}$

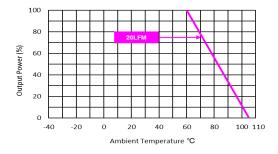

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom (with heatsink)}}$

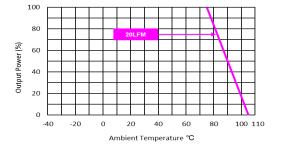

All test conditions are at 25°C The figures are identical for MKWI80-24D12


Efficiency Versus Output Current

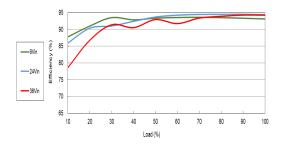

Efficiency Versus Input Voltage Full Load

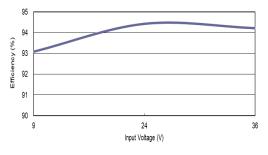

Typical Output Ripple and Noise V_{in} = V_{in} nom; Full Load

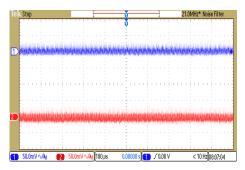

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

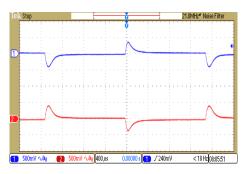

Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

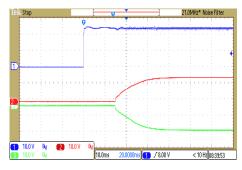
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

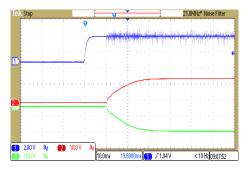

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom (without heatsink)}}$

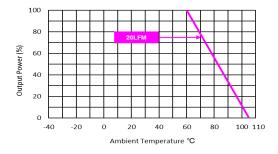

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom (with heatsink)}}$

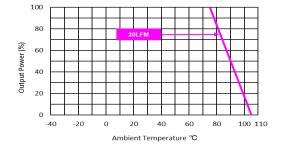

All test conditions are at 25°C $\,$ The figures are identical for MKWI80-24D15 $\,$


Efficiency Versus Output Current

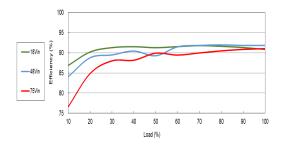

Efficiency Versus Input Voltage Full Load

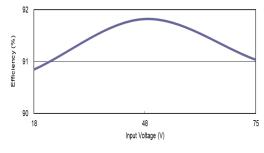

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

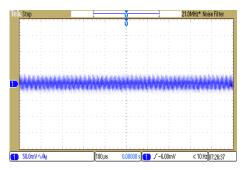

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

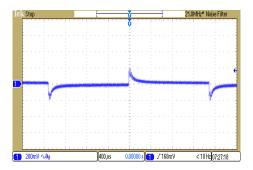

Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

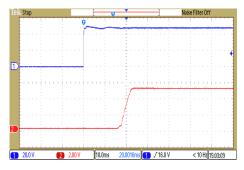
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

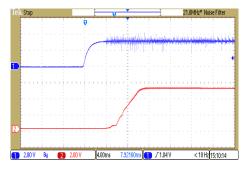

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom (without heatsink)}}$

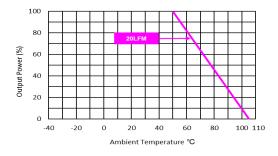

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom (with heatsink)}}$

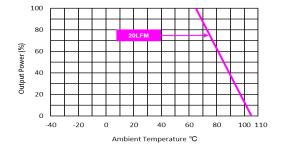

All test conditions are at 25°C The figures are identical for MKWI80-48S05


Efficiency Versus Output Current

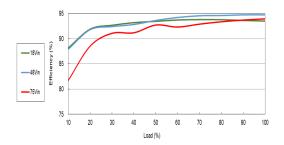

Efficiency Versus Input Voltage Full Load

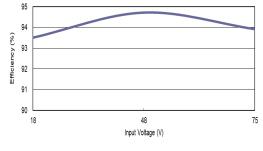

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

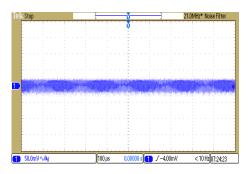

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$


Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

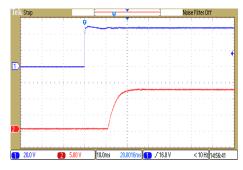
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

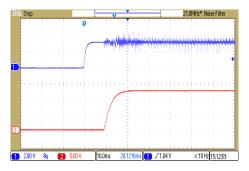

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom (without heatsink)}}$

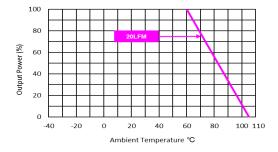

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom (with heatsink)}}$

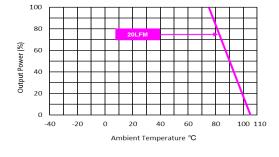

All test conditions are at 25° C The figures are identical for MKWI80-48S12


Efficiency Versus Output Current

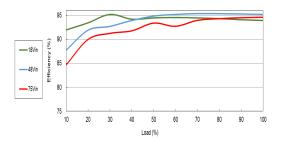

Efficiency Versus Input Voltage Full Load

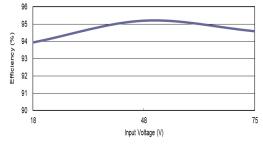

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

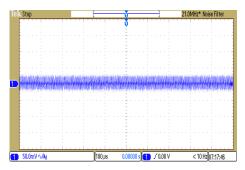

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

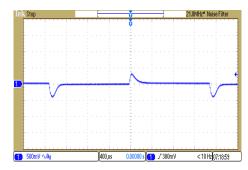

Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

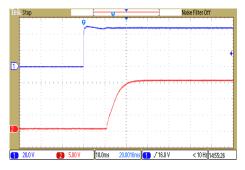
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

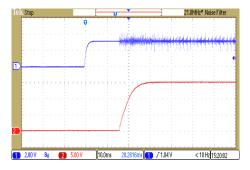

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom (without heatsink)}}$

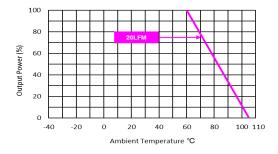

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom (with heatsink)}}$

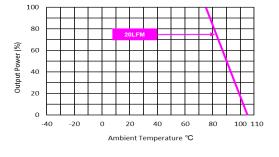

All test conditions are at 25°C The figures are identical for MKWI80-48S15


Efficiency Versus Output Current

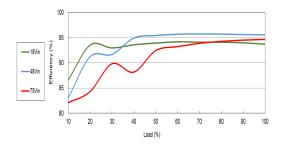

Efficiency Versus Input Voltage Full Load

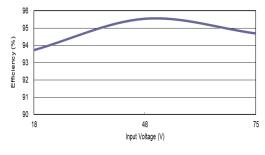

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

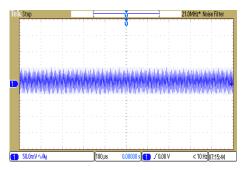

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

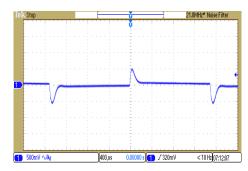

Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

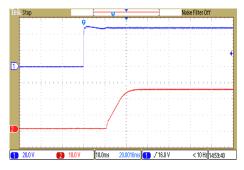
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

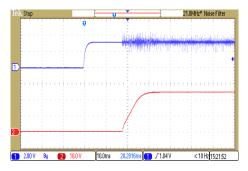

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom (without heatsink)}}$

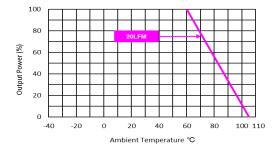

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom (with heatsink)}}$

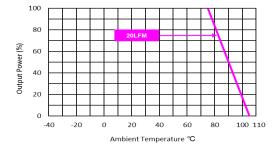

All test conditions are at 25°C The figures are identical for MKWI80-48S24


Efficiency Versus Output Current

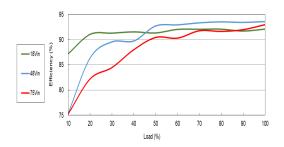

Efficiency Versus Input Voltage Full Load

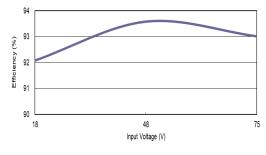

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

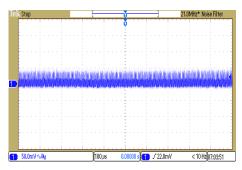

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

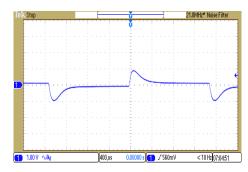

Typical Input Start-Up and Output Rise Characteristic V_{in} = V_{in} nom ; Full Load

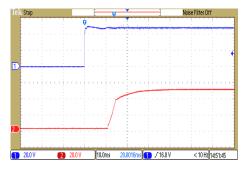
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

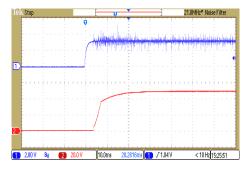

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom (without heatsink)}}$

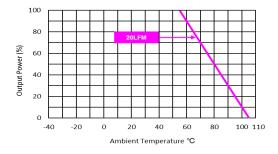

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom (with heatsink)}}$

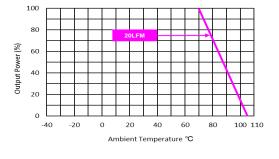

All test conditions are at 25°C The figures are identical for MKWI80-48S48


Efficiency Versus Output Current

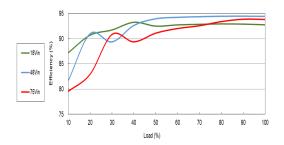

Efficiency Versus Input Voltage Full Load

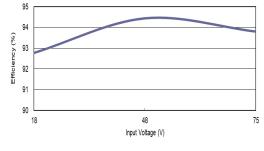

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

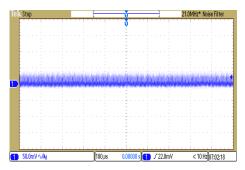

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

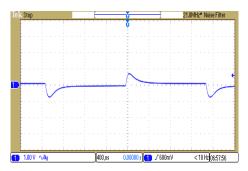

Typical Input Start-Up and Output Rise Characteristic V_{in} = V_{in} nom ; Full Load

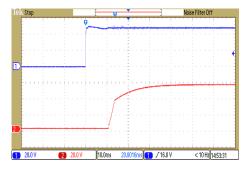
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

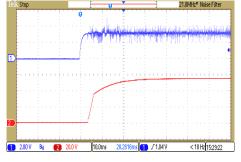

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom (without heatsink)}}$

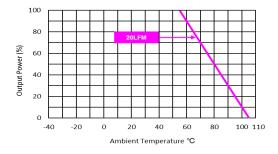

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom (with heatsink)}}$

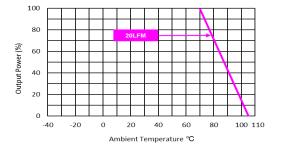

All test conditions are at 25°C The figures are identical for MKWI80-48S54


Efficiency Versus Output Current

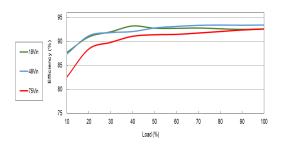

Efficiency Versus Input Voltage Full Load

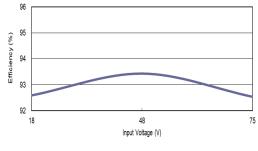

Typical Output Ripple and Noise V_{in} = $V_{in nom}$; Full Load

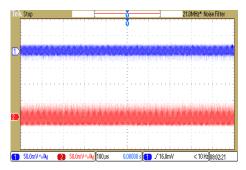

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$


Typical Input Start-Up and Output Rise Characteristic V_{in} = V_{in} nom ; Full Load

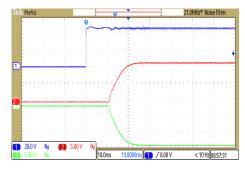
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

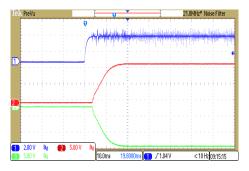

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom (without heatsink)}}$

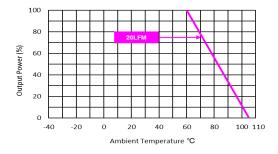

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom (with heatsink)}}$

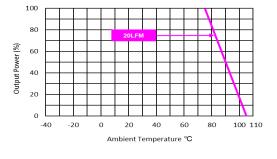

All test conditions are at 25°C The figures are identical for MKWI80-48D12

Efficiency Versus Output Current

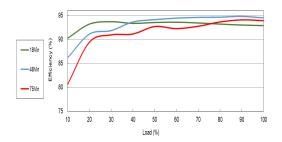

Efficiency Versus Input Voltage Full Load

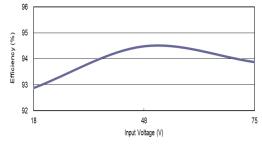

Typical Output Ripple and Noise V_{in} = V_{in} nom; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$

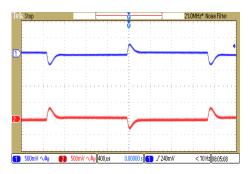

Typical Input Start-Up and Output Rise Characteristic V_{in} = $V_{\text{in nom}}$; Full Load

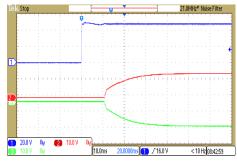
ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load

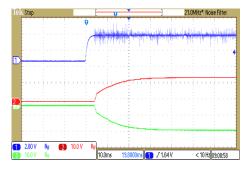

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom (without heatsink)}}$

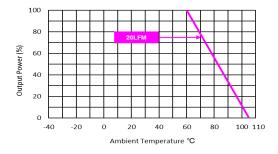

Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom (with heatsink)}}$

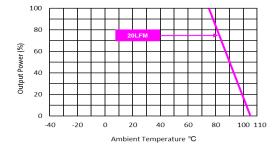

All test conditions are at 25°C $\,$ The figures are identical for MKWI80-48D15 $\,$


Efficiency Versus Output Current

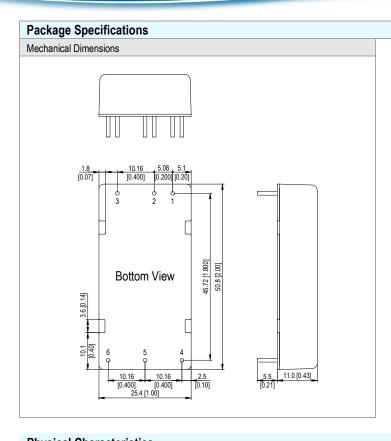

Efficiency Versus Input Voltage Full Load


Typical Output Ripple and Noise V_{in} = V_{in} nom; Full Load


Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; V_{in} = $V_{in\,nom}$


Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}} = V_{\text{in nom}}$; Full Load

ON/OFF Voltage Start-Up and Output Rise Characteristic V_{in} = $V_{in nom}$; Full Load



Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom (without heatsink)}}$

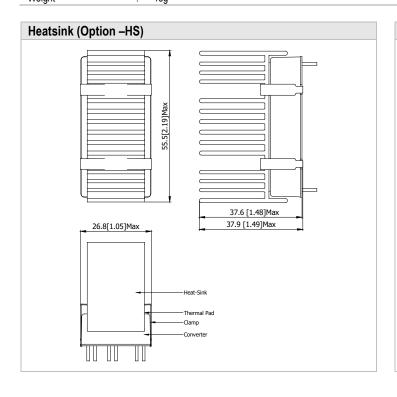
Derating Output Current Versus Ambient Temperature $V_{\text{in}} = V_{\text{in nom (with heatsink)}}$

Pin Con	Pin Connections								
Pin	Single Output	Dual Output	Diameter mm (inches)						
1	+Vin	+Vin	Ø 1.0 [0.04]						
2	-Vin	-Vin	Ø 1.0 [0.04]						
3	Remote On/Off	Remote On/Off	Ø 1.0 [0.04]						
4	+Vout	+Vout	Ø 1.0 [0.04]						
5	-Vout	Common	Ø 1.0 [0.04]						
6	Trim	-Vout	Ø 1.0 [0.04]						

- ► All dimensions in mm (inches)
- ➤ Tolerance: X.X±0.75 (X.XX±0.03) X.XX±0.25 (X.XXX±0.01)
- ► Pin diameter tolerance: X.X±0.05 (X.XX±0.002)

Physical Characteristics Case Size : 5

Case Size : 50.8x25.4x11.0 mm (2.0x1.0x0.43 inches)


Case Material : Metal With Non-Conductive Baseplate

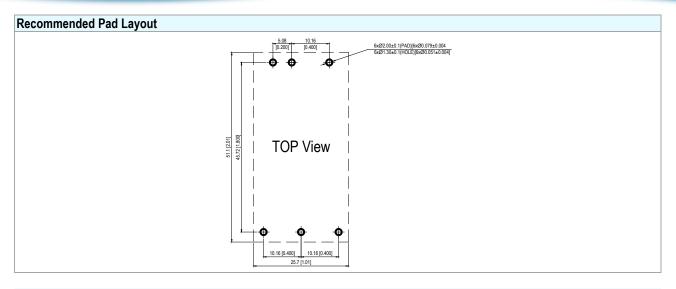
Base Material : FR4 PCB (flammability to UL 94V-0 rated)

Pin Material : Copper Alloy

Potting Material : Silicone (UL94-V0)

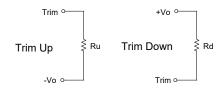
Weight : 46g

Physical Characteristics


Heatsink Material : Aluminum

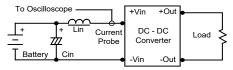
Finish : Black Anodized Coating

Weight : 29.85g

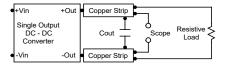

- ► The advantages of adding a heatsink are:
- To improve heat dissipation and increase the stability and reliability of the DC-DC converters at high operating temperatures.
- 2. To increase operating temperature of the DC-DC converter, please refer to Derating Curve.

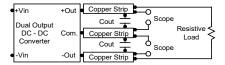
External Output Trimming

Output can be externally trimmed by using the method shown below


	MKWI80)-XXS05	MKWI80	-XXS12	MKWI80)-XXS15	MKWI80	0-XXS24	MKWI80	-XXS48	MKWI80	-XXS54
Trim Range (%)	Trim down (kΩ)	Trim up (kΩ)	Trim down (kΩ)	Trim up (kΩ)	Trim down (kΩ)	Trim up	Trim down (kΩ)	Trim up	Trim down (kΩ)	Trim up (kΩ)	Trim down (kΩ)	Trim up (kΩ)
1	138.88	106.87	413.55	351.00	530.73	422.77	598.66	487.14	1,194.43	920.37	3,000.15	748.65
2	62.41	47.76	184.55	157.50	238.61	189.89	267.78	218.02	540.12	414.68	1,396.97	291.83
3	36.92	28.06	108.22	93.00	141.24	112.26	157.49	128.31	322.01	246.12	862.58	139.55
4	24.18	18.21	70.05	60.75	92.56	73.44	102.34	83.46	212.96	161.84	595.39	63.41
5	16.53	12.30	47.15	41.40	63.35	50.15	69.25	56.55	147.53	111.27	435.07	17.73
6	11.44	8.36	31.88	28.50	43.87	34.63	47.19	38.61	103.91	77.56	328.19	
7	7.79	5.55	20.98	19.29	29.96	23.54	31.44	25.79	72.75	53.48	251.85	
8	5.06	3.44	12.80	12.37	19.53	15.22	19.62	16.18	49.38	35.42	194.59	
9	2.94	1.79	6.44	7.00	11.41	8.75	10.43	8.70	31.20	21.37	150.06	
10	1.24	0.48	1.35	2.70	4.92	3.58	3.08	2.72	16.66	10.14	114.43	
11											85.29	
12											61.00	
13											40.44	
14											22.82	
15											7.56	

Test Setup


Input Reflected-Ripple Current Test Setup


Input reflected-ripple current is measured with a inductor Lin $(4.7\mu\text{H})$ and Cin $(220\mu\text{F}, \text{ESR} < 1.0\Omega \text{ at } 100 \text{ kHz})$ to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.

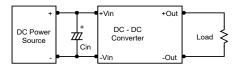
Peak-to-Peak Output Noise Measurement Test

Use external ceramic capacitor, please refer to the descriptions in the "Ripple & Noise" section on page 2. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

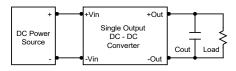
Remote On/Off

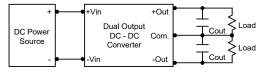
Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal.


The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at on/off terminal during a logic low is -500µA. The maximum allowable leakage current of the switch at on/off terminal (3.5 to 12V) is 500µA.

Overload Protection

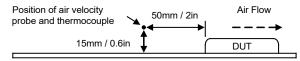
To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.


Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a $68\mu\text{F}$ for the 24V and 48V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 22μ F capacitors at the output.

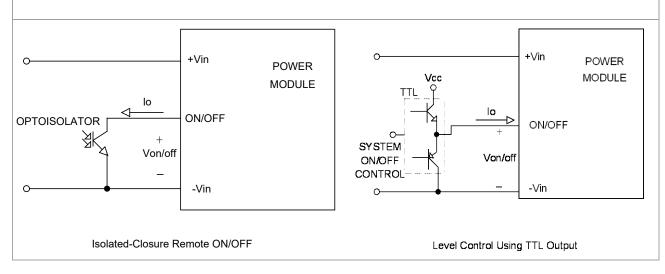


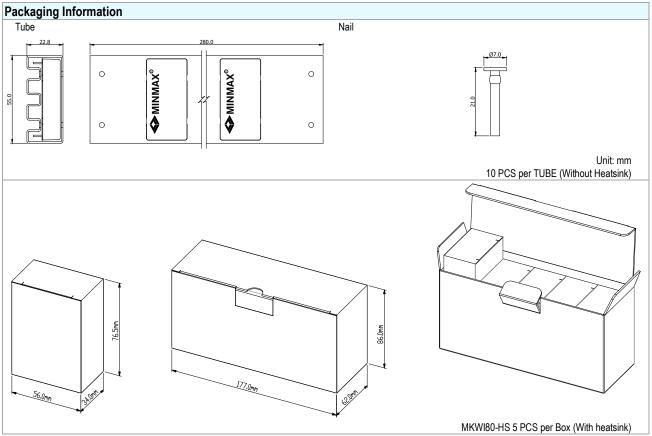
Maximum Capacitive Load

The MKWI80 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

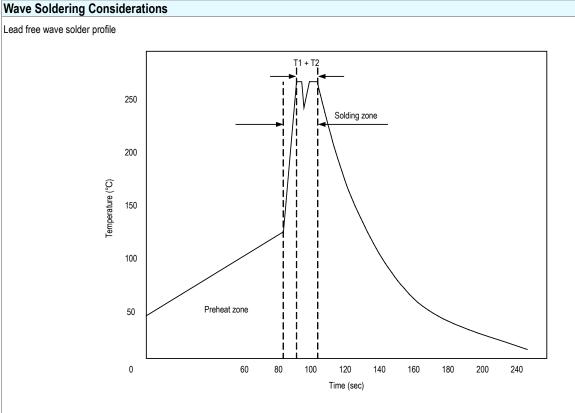
Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.





Remote ON/OFF Implementation


The positive logic remote ON/OFF control circuit is included. Turns the module ON during logic High on the ON/Off pin and turns OFF during logic Low. The ON/OFF input signal (Von/off) that referenced to GND. If not using the remote on/off feature, please open circuit between on/off pin and -Vin pin to turn the module on.

Remote ON/OFF implementation

Zone	Reference Parameter			
Preheat	Rise temp. speed : 3°C/sec max.			
zone	Preheat temp.: 100~130°C			
Actual	Peak temp. : 250~260°C			
heating	Peak time(T1+T2): 4~6 sec			

Hand Welding Parameter

Reference Solder: Sn-Ag-Cu : Sn-Cu : Sn-Ag
Hand Welding: Soldering iron : Power 60W

Welding Time: 2~4 sec
Temp.: 380~400°C

Part Number Structure M K 80 S 05 Output Power Output Quantity Output Voltage Negative logic Package Type Ultra-wide 4:1 Input Voltage Range 2" X 1" Input Voltage Range 80 Watt 24: ~ 36 VDC S: Single 05: 5 VDC 48: 75 VDC 12: 12 VDC 18 D: Dual 15: 15 VDC 24: 24 VDC 48: 48 VDC VDC 54: 54

MTBF and Reliability

The MTBF of MKWI80 series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit
MKWI80-24S05	114,244	
MKWI80-24S12	244,579	
MKWI80-24S15	250,513	
MKWI80-24S24	294,163	
MKWI80-24S48	268,468	
MKWI80-24S54	260,681	
MKWI80-24D12	276,722	
MKWI80-24D15	269,302	Haves
MKWI80-48S05	141,755	Hours
MKWI80-48S12	274,229	
MKWI80-48S15	284,237	
MKWI80-48S24	324,228	
MKWI80-48S48	256,070	
MKWI80-48S54	264,513	
MKWI80-48D12	262,059	
MKWI80-48D15	275,761	