

MSCW01 Series EC Note

DC-DC CONVERTER 1W, SMD Package

Features

- Industrial SMD Package
- Wide 2:1 Input Voltage Range
- Fully Regulated Output Voltage
- I/O Isolation 1500 VDC
- Operating Ambient Temp. Range -40°C to +85°C
- No Min. Load Requirement
- Overload and Short Circuit Protection
- Remote On/Off Function
- Water-washable Process Available(option)
- Qualified for Lead-free Reflow Solder Process According to IPC/JEDEC J-STD-020D.1
- Tape & Reel Package Available
- UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval

Applications

- Distributed power architectures
- Workstations
- Computer equipment
- Communications equipment

Product Overview

The MSCW01 series is a family of compact 1W DC-DC-converters with wide 2:1 input voltage ranges and tightly regulated output voltages. They work with high efficiency over the full load range and come with a remote On/Off control input.

High efficiency to 82% allows operating temperatures up to +75°C without power derating. The very small footprint of these converters make them an ideal solution for many space critical applications in communication equipment, instrumentation and many other battery operated applications.

Table of contents

Model Selection Guide F	2 Test Setup	P25
Input SpecificationsF	2 Technical Notes	P25
Remote On/Off Control	2 Remote On/Off Implementation	P26
Output Specifications F	3 Packaging Information for Tube	P27
General Specifications	3 Packaging Information for Tape & Reel	P27
Environmental SpecificationsF	3 Soldering and Reflow Considerations	P28
Characteristic Curves F	4 Part Number Structure	P29
Package Specifications	4 MTBF and Reliability	P29

Date:2024-02-27 Rev:2

Model Selection	Guide							
Model Number	Input Voltage	Output Voltage	Output Current	Inp Cur	out rent	Max. capacitive Load	Reflected Ripple	Efficiency (typ.)
	(Range)		Max.	@Max. Load	@No Load		current	@Max. Load
	VDC	VDC	mA	mA(typ.)	mA(typ.)	μF	mA (typ.)	%
MSCW01-05S05		5	200	256		1680		78
MSCW01-05S12	5	12	83	252		820		79
MSCW01-05S15	$(15 \sim 0)$	15	67	248	40	680	80	81
MSCW01-05D12	(4.5 * 5)	±12	±42	255		470#		79
MSCW01-05D15		±15	±33	248		330#		80
MSCW01-12S05		5	200	105		1680		79
MSCW01-12S12	10	12	83	105		820		79
MSCW01-12S15	12 (0 -: 19)	15	67	102	20	680	40	82
MSCW01-12D12	(9~10)	±12	±42	104		470#		81
MSCW01-12D15		±15	±33	103		330#		80
MSCW01-24S05		5	200	53		1680		79
MSCW01-24S12	24	12	83	51		820		82
MSCW01-24S15	(19 -, 26)	15	67	51	10	680	30	82
MSCW01-24D12	(10~30)	±12	±42	51		470#		82
MSCW01-24D15		±15	±33	50		330#		82
MSCW01-48S05		5	200	26		1680		79
MSCW01-48S12	40	12	83	26		820		80
MSCW01-48S15	40 (26 -: 75)	15	67	26	7	680	20	80
MSCW01-48D12	(30 ~ 13)	±12	±42	26		470#		81
MSCW01-48D15		±15	±33	25		330#		81

For each output

Input Specifications					
Parameter	Model	Min.	Тур.	Max.	Unit
	5V Input Models	-0.7		15	
Innut Suma Valtage (1 and may)	12V Input Models	-0.7		25	
input Surge Voltage (1 sec. max.)	24V Input Models	-0.7		50	
	48V Input Models	-0.7		100	
	5V Input Models			4.5	VDC
Ctart Lin Thrashold Valtage	12V Input Models			9	
Stan-Op Threshold Voltage	24V Input Models			18	
	48V Input Models			36	
Input Filter	All Models		Internal	Capacitor	

Remote On/Off Control

Parameter	Conditions	Min.	Тур.	Max.	Unit
Converter On	Und	er 0.6 VDC or Op	en Circuit		
Converter Off	Needs to add an external Re: $1k\Omega$	3		15	VDC
Standby Input Current	Nominal Vin			3	mA

~		~			
())	itniit	Sno	citics	ation	
	แมนเ	ODC		liuu	13

output opeomoations						
Parameter	Conditi	ions	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy					±1.0	%Vnom.
Output Voltage Balance	Dual Output, Ba	lanced Loads			±1.0	%
Line Regulation	Vin=Min. to Max	. @Full Load			±0.2	%
	Min. Lood to Full Lood	Single Output			±1.0	%
Lood Desculation	Min. Load to Full Load	Dual Output			±1.0	%
Load Regulation	la=10% to 00%	Single Output			±0.5	%
	10-10% 10 90%	Dual Output			±0.8	%
Minimum Load		No n	ninimum Load Re	quirement		
Ripple & Noise	0-20 MHz B	andwidth			75	mV _{P-P}
Transient Recovery Time		Channel		250		µsec
Transient Response Deviation	25% L080 Ste	ep Change		±3	±5	%
Temperature Coefficient					±0.02	%/
Short Circuit Protection		Cont	inuous, Automatio	c Recovery		

General Specifications

Parameter	Conditions	Min.	Тур.	Max.	Unit
	60 Seconds	1500			VDC
I/O Isolation voltage	1 Second	1800			VDC
I/O Isolation Resistance	500 VDC	1000			MΩ
I/O Isolation Capacitance	100kHz, 1V			50	pF
Switching Frequency			220		kHz
MTBF(calculated)	MIL-HDBK-217F@25°C, Ground Benign		2,800,000		Hours
Moisture Sensitivity Level (MSL)	IPC/JEDEC J-STD-020D.1		Lev	/el 2	
	UL/cUL 60950-1 recogniti	ion(CSA certificat	e), IEC/EN 60950)-1(CB-report)	
Satety Approvais	UL/cUL 62368-1 recogni	tion(UL certificate	e), IEC/EN 62368-	-1(CB-report)	

Environmental Specifications

Parameter	Min.	Max.	Unit
Operating Ambient Temperature Range (See Power Derating Curve)	-40	+85	°C
Case Temperature		+95	°C
Storage Temperature	-55	+125	°C
Humidity (non condensing)		95	% rel. H
Lead-free Refiow Solder Process	IPC/	JEDEC J-STD-02	20D.1

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage, rated output current unless otherwise noted.
- 2 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 3 Other input and output voltage may be available, please contact MINMAX.
- 4 Specifications are subject to change without notice.
- 5 The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MSCW01-05S05 $\,$

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom; Full Load

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Full Load

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load

Date:2024-02-27 Rev:2

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MSCW01-05S12 $\,$

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom; Full Load

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Full Load

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load

Date:2024-02-27 Rev:2

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MSCW01-05S15 $\,$

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom; Full Load

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

 Tek
 \$21.0442* Noise Filter

 1
 \$21.0442* Noise Filter

 1
 \$21.0442* Noise Filter

 1
 \$21.0442* Noise Filter

 1
 \$21.0442* Noise Filter

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load

Date:2024-02-27 Rev:2

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MSCW01-05D12 $\,$

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \text{=} V_{\text{in nom}}$

 Ie k Stop
 Image: Comparison of the state of

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

ON/OFF Voltage Start-Up and Output Rise Characteristic $$V_{\text{in}}$=V_{\text{in nom}}$; Full Load$

Date:2024-02-27 Rev:2

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MSCW01-05D15 $\,$

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

 CPL Stop
 21.00HE* Noise Filter

 Image: Stop
 21.00HE* Noise Filter

 Image: Stop
 10.00HE* Noise Filter

 Image: Stop
 10.00HE* Noise Filter

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

ON/OFF Voltage Start-Up and Output Rise Characteristic $$V_{\text{in}}$=V_{\text{in nom}}$; Full Load$

Date:2024-02-27 Rev:2

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MSCW01-12S05 $\,$

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom; Full Load

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

 Te k Stop
 21.04Hz* Noise Filter

 1
 21.04Hz* Noise Filter

 1
 50.011/2

 1
 50.011/2

 1
 50.011/2

 1
 50.011/2

 1
 50.011/2

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load

Date:2024-02-27 Rev:2

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MSCW01-12S12 $\,$

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MSCW01-12S15 $\,$

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom; Full Load

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MSCW01-12D12 $\,$

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MSCW01-12D15 $\,$

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MSCW01-24S05 $\,$

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Full Load

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MSCW01-24S12 $\,$

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom; Full Load

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \text{=} V_{\text{in nom}}$

 1
 21.0044*
 Noise Filter

 1
 50.0047/-08/
 [1.00ms
 0.00000 s][1]
 / 400mV
 <1046[533:19]</td>

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MSCW01-24S15 $\,$

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

 18 k Stop
 21.044t* Noise Fitter

 19 k
 10 k

 10 k
 10 k

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MSCW01-24D12 $\,$

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom; Full Load

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MSCW01-24D15 $\,$

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MSCW01-48S05 $\,$

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom; Full Load

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MSCW01-48S12 $\,$

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom; Full Load

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \text{=} V_{\text{in nom}}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load

Date:2024-02-27 Rev:2

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MSCW01-48S15 $\,$

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Tek Stop 21.00H2* Noise Filter

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MSCW01-48D12 $\,$

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom ; Full Load

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}} \text{=} V_{\text{in nom}}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

ON/OFF Voltage Start-Up and Output Rise Characteristic $$V_{\text{in}}$=V_{\text{in nom}}$; Full Load$

Characteristic Curves

All test conditions are at 25°C $\,$ The figures are identical for MSCW01-48D15 $\,$

Efficiency Versus Output Current

Typical Output Ripple and Noise Vin=Vin nom; Full Load

Typical Input Start-Up and Output Rise Characteristic $V_{\text{in}}{=}V_{\text{in nom}} \ ; \ \text{Full Load}$

Derating Output Current Versus Ambient Temperature and Airflow $V_{\text{in}}{=}V_{\text{in nom}}$

Transient Response to Dynamic Load Change from 100% to 75% of Full Load ; Vin=Vin nom

ON/OFF Voltage Start-Up and Output Rise Characteristic \$\$V_{in}=V_{in nom}\$; Full Load

Single Output	Dual Output
-Vin	-Vin
emote On/Off	Remote On/Of
NC	Common
NC	-Vout
+Vout	+Vout
-Vout	Common
+Vin	+Vin
	Single Output -Vin emote On/Off NC NC +Vout -Vout +Vin

r nyoloar onaraotonotioo		
Case Size	:	18.9x13.7x8.45mm (0.74x0.54x0.33 inches)
Case Material	:	Plastic resin (flammability to UL 94V-0 rated)
Pin Material	:	Phosphor Bronze
Weight	:	2.9g

NC: No Connection

Date:2024-02-27 Rev:2

Test Setup

Input Reflected-Ripple Current Test Setup

Input reflected-ripple current is measured with a inductor Lin (4.7µH) and Cin (220µF, ESR < 1.0Ω at 100 kHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.

Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.47µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Remote On/Off

Negative logic remote on/off turns the module off during a logic high voltage on the remote on/off pin, and on during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic high is 2~4mA current applied via 1Kohm resistor. A logic low is open circuit or high impedance.

Circuit diagram for current source based control

Circuit diagram for voltage level based cont

Maximum Capacitive Load

The MSCW01 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is commended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 8.2μ F for the 5V input device, a 3.3μ F for the 12V input devices and a 1.5μ F for the 24V and 48V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3µF capacitors at the output.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 95°C. The derating curves are determined from measurements obtained in a test setup.

1ΚΩ

Power Module OFF

3mA

Current Source

-Vino-

ON/OFF

Remote On/Off Implementation

3mA

Current Source

-Vin∽

1ΚΩ

Power Module ON

ON/OFF

Date:2024-02-27 Rev:2

Packaging Style	Quantity
With Heatsink Tube	N/A
Tape and Reel to IEC 286-3 Specifications	250

Date:2024-02-27 Rev:2

Soldering and Reflow Considerations

Profile	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average ramp-up rate(Ts max. To Tp)	3°C/second max.	3°C/second max.
Preheat		
Temperature Min (Ts _{min.})	100°C	150°C
 Temperature Max (Ts_{max.}) 	150°C	200°C
• Time (Ts _{min} to Ts _{max}) (ts)	60~120 seconds	60~180 seconds
Time maintained above:		
· Temperature (T∟)	183°C	217°C
· Time (t∟)	60~150 seconds	60~150 seconds
Peak Temperature (Tp)	See Table 4-1	See Table 4-2
Time within 5°C of actual Peak	10~30 seconds	20~40 seconds
Temperature (tp) ²		
Ramp-down Rate	6°C/second max.	6°C/second max.
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.

Note 1: All temperatures refer to topside of the package, measured on the package body surface.

Note 2: Time within 5°C of actual peak temperature (tp) specified for the reflow profiles is a "supplier" minimum and "user" maximum.

Table 4-1 SnPb Eutectic Process-Classification Temperatures (Tc)

	Volume mm ³	Volume mm ³
Package Thickness	<350	≥350
<2.5mm	235°C	220°C
≥2.5mm	220°C	220°C

Table 4-2 Pb-Free Process-Classification Temperatures (T_c)

	Volume mm ³	Volume mm ³	Volume mm ³
Package Thickness	<350	350-2000	>2000
<1.6mm	260°C	260°C	260°C
1.6mm-2.5mm	260°C	250°C	245°C
>2.5mm	250°C	245°C	245°C

Date:2024-02-27 Rev:2

Part N	lumber Structu	re												
M	SC	W	01	-			05				S		05	
	Package Type	Wide 2:1	Output Power		l	nput V	oltag	e Ran	ge	Outp	ut Quantity	Out	put Vo	Itage
	SMD-14	Input Voltage Range	1 Watt		05:	4.5	~	9	VDC	S:	Single	05:	5	VDC
					12:	9	~	18	VDC	D:	Dual	12:	12	VDC
					24:	18	~	36	VDC			15:	15	VDC
					48:	36	~	75	VDC					

MTBF and Reliability

The MTBF of MSCW01 series of DC-DC converters has been calculated using

MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

Model	MTBF	Unit
MSCW01-05S05	3,065,788	
MSCW01-05S12	3,281,459	
MSCW01-05S15	3,644,574	
MSCW01-05D12	2,826,113	
MSCW01-05D15	3,210,134	
MSCW01-12S05	3,090,639	
MSCW01-12S12	3,241,876	
MSCW01-12S15	3,691,926	
MSCW01-12D12	2,931,378	
MSCW01-12D15	3,132,389	llaure
MSCW01-24S05	3,108,962	Hours
MSCW01-24S12	3,565,277	
MSCW01-24S15	3,696,868	
MSCW01-24D12	3,039,345	
MSCW01-24D15	3,309,884	
MSCW01-48S05	2,992,537	
MSCW01-48S12	3,337,463	
MSCW01-48S15	3,373,606	
MSCW01-48D12	2,840,044	
MSCW01-48D15	3,113,289	

Date:2024-02-27 Rev:2